organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-methylpyridinium 1*H*-pyrazole-3,5-dicarboxylate trihydrate

Tara Shahani, Hoong-Kun Fun*‡ and Madhukar Hemamalini

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 14 October 2010; accepted 15 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.113; data-to-parameter ratio = 18.8.

In the title compound, $2C_6H_9N_2^{+}\cdot C_5H_2N_2O_4^{-2-}\cdot 3H_2O$, the 1*H*-pyrazole-3,5-dicarboxylate anion is close to planar [maximum deviation = 0.208 (1) Å]. The two distinct 2-amino-5-methyl-pyridinium cations are also almost planar, with maximum deviations of 0.018 (2) and 0.014 (2) Å. In the crystal, pairs of intermolecular N-H···O and O-H···O hydrogen bonds connect neighbouring molecules into dimers, generating $R_2^2(8)$ and $R_4^2(8)$ ring motifs, respectively. Further intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski *et al.* (1997); Katritzky *et al.* (1996). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For related structures, see; Xia *et al.* (2007); King *et al.* (2004). For details and applications of pyrazole-3,5-dicarboxylic acid, see: Lee *et al.* (1989); Chambers *et al.* (1985); Pan *et al.* (2000); Pan, Ching *et al.* (2001); Pan, Frydel *et al.* (2001).

Experimental

Crystal data

2C₆H₉N₂⁺·C₅H₂N₂O₄²⁻·3H₂O $M_r = 426.44$ Triclinic, $P\overline{1}$ a = 7.8985 (1) Å b = 9.2195 (1) Å c = 15.3922 (2) Å a = 101.942 (1)° $\beta = 93.883$ (1)°

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.952, T_{\rm max} = 0.978$

Refinement

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}_{-}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

 $\gamma = 104.648 \ (1)^{\circ}$

Z = 2

V = 1052.40 (2) Å³

Mo $K\alpha$ radiation

 $0.47 \times 0.24 \times 0.21 \text{ mm}$

26056 measured reflections 6103 independent reflections

5085 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^{-3}$

T = 100 K

 $R_{\rm int} = 0.026$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N2\cdots O4^{i}$	0.931 (16)	1.871 (16)	2.7912 (12)	169.7 (15)
$N4A - H3NA \cdots O1W^{ii}$	0.861 (18)	2.024 (17)	2.8520 (14)	161.2 (17)
$N3B - H1NB \cdots O3^{iii}$	0.900 (17)	1.755 (17)	2.6483 (12)	171.4 (16)
$N4B - H2NB \cdots O4^{iii}$	0.914 (18)	2.022 (18)	2.9323 (13)	173.8 (16)
$N4B - H3NB \cdots O3W^{iv}$	0.889 (18)	2.007 (18)	2.8641 (13)	161.6 (17)
$N3A - H1NA \cdots O2^{iv}$	0.942 (18)	1.732 (18)	2.6686 (12)	172.8 (17)
$N4A - H2NA \cdots O1^{iv}$	0.907 (18)	2.106 (18)	3.0021 (13)	169.4 (15)
$O1W - H1W1 \cdots O3$	0.871 (19)	1.902 (19)	2.7517 (12)	164.8 (17)
$O1W - H2W1 \cdots O3W^{iv}$	0.85 (2)	1.94 (2)	2.7878 (14)	178 (2)
$O2W - H1W2 \cdots O1$	0.850 (18)	2.003 (18)	2.8427 (12)	169.8 (17)
$O2W - H2W2 \cdots O1^{v}$	0.858 (18)	1.987 (18)	2.8434 (13)	176.1 (15)
$O3W - H1W3 \cdots O2$	0.888 (17)	1.844 (17)	2.7299 (12)	174.8 (15)
$O3W - H2W3 \cdots O2W^{vi}$	0.881 (18)	1.900 (18)	2.7758 (13)	172.1 (17)
$C10-H10A\cdots O2W$	0.93	2.50	3.3986 (15)	164

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y, -z + 1; (iii) -x + 1, -y, -z; (iv) x, y - 1, z; (v) -x + 1, -y + 1, -z + 1; (vi) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship and MH thanks USM for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5681).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
- Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736–4738.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
- King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans, pp. 852-861.

- Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428–431.
- Pan, L., Ching, N., Huang, X. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.
- Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). *Inorg. Chem.* 40, 1271–1276.
- Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527–530.
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). *Heterocycles in Life and Society*. New York: Wiley.
- Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H.-B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). *Inorg Chem.* 46, 3450–3458.

Acta Cryst. (2010). E66, o2876-o2877 [doi:10.1107/S1600536810041644]

2-Amino-5-methylpyridinium 1H-pyrazole-3,5-dicarboxylate trihydrate

T. Shahani, H.-K. Fun and M. Hemamalini

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski *et al.*, 1997; Katritzky *et al.*, 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee *et al.*, 1989; Chambers *et al.*, 1985). 3,5-Pyrazole dicarboxylic acid (H₂PzDCA) is a multifunctional ligand; it has multiple coordination sites that allow structures of higher dimensions and it also has abstractable protons that allow various acidity-dependent coordination modes (Pan *et al.*, 2000). A variety of H₂PzDCA coordination compounds have been synthesized and reported in the literature (Pan, Ching *et al.*, 2001; Pan, Frydel *et al.*, 2001). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound, (Fig. 1), consists of two 2-amino-5-methylpyridinium cations, a 1*H*-pyrazole-3-5-dicarboxylate anion and three water molecules. The 1*H*-pyrazole-3,5-dicarboxylate anion and 2-amino-5-methylpyridinium cations are approximately planar with a maximum deviations of 0.208 (1) Å at atom O2 and 0.018 (2) Å at atoms N4A, C11A and 0.014 (2) Å at atom N4B. The torsion angles (O2/C2/C1/N1), (C1–C3/O1), (C3–C5/O3) and (N2/C4/C5/04) are 8.81 (15), 10.46 (16), 4.89 (15) and 4.60 (16)°, respectively. Bond lengths (Allen *et al.*, 1987) and angles are normal and comparable to those related structures (Xia *et al.*, 2007; King *et al.*, 2004).

In the crystal packing (Fig. 2), intermolecular N2—H1N2…O4, N4A—H3NA…O1W, N3B—H1NB…O3, N4B—H2NB…O4, N4B—H3NB…O3W, N3A—H1NA…O2, N4A—H2NA…O1, O1W—H1W1…O3, O1W—H2W1…O3W, O2W—H1W2…O1, O2W—H2W2…O1, O3W—H1W3…O2, O3W—H2W3…O2W and C10—H10A…O2W hydrogen bonds (Table 1) link the molecules into three-dimensional network. Within this network, pairs of intermolecular N3B—H1NB…O3, N4A—H2NA…O1 and O1—H1W2…O2W, O2W—H1W2…O1 hydrogen bonds connect neighbouring molecules to form dimers, generating $R^2_2(8)$ and $R^2_4(8)$ (Bernstein *et al.*, 1995) ring motifs, respectively.

Experimental

A hot methanol/water solution (10/10 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and pyrazole-3,5-dicarboxylic acid (78 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless blocks of (I) appeared after a few days.

Refinement

The hydrogen atoms bound to O atoms were located in a difference map and constrained to ride with their parent atoms, with $U_{iso}(H) = 1.5U_{iso}(O)$ [O—H = 0.85 (2)–0.889 (18) Å]. The hydrogen atoms bound to N atoms were located in a difference map and were refined freely [N—H = 0.863 (18)–0.943 (18) Å]. All other H atoms to C were positioned geometrically [range of C—H = 0.93–0.96 Å] with $U_{iso}(H) = 1.2$ or $1.5U_{iso}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2. The crystal packing of the title compound, viewed along b axis. Intermolecular hydrogen bonds linked the molecules into three-dimensional network.

2-Amino-5-methylpyridinium 1*H*-pyrazole-3,5-dicarboxylate trihydrate

Crystal data

$2C_6H_9N_2^+ \cdot C_5H_2N_2O_4^{2-} \cdot 3H_2O$	Z = 2
$M_r = 426.44$	F(000) = 452
Triclinic, <i>P</i> T	$D_{\rm x} = 1.346 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.8985 (1) Å	Cell parameters from 9892 reflections
b = 9.2195(1) Å	$\theta = 2.4 - 35.1^{\circ}$
c = 15.3922 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 101.942 (1)^{\circ}$	T = 100 K
$\beta = 93.883 \ (1)^{\circ}$	Block, colourless
$\gamma = 104.648 \ (1)^{\circ}$	$0.47 \times 0.24 \times 0.21 \text{ mm}$
$V = 1052.40 (2) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD diffractometer	6103 independent reflections
Radiation source: fine-focus sealed tube	5085 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 30.0^\circ, \ \theta_{\text{min}} = 2.4^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -11 \rightarrow 11$
$T_{\min} = 0.952, T_{\max} = 0.978$	$k = -12 \rightarrow 12$
26056 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0569P)^{2} + 0.2775P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6103 reflections	$(\Delta/\sigma)_{max} < 0.001$
325 parameters	$\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.68720 (11)	0.64094 (9)	0.43780 (5)	0.02004 (16)
O2	0.63845 (11)	0.84955 (9)	0.40067 (5)	0.02212 (17)
O3	0.70719 (11)	0.24170 (9)	0.10667 (5)	0.02152 (17)
O4	0.58424 (10)	0.33899 (9)	0.00540 (5)	0.01827 (16)
N1	0.56503 (12)	0.68973 (10)	0.21937 (6)	0.01756 (18)
N2	0.56444 (12)	0.58634 (10)	0.14333 (6)	0.01631 (17)
C1	0.65092 (14)	0.71292 (12)	0.38074 (7)	0.01627 (19)
C2	0.62433 (13)	0.63055 (11)	0.28462 (6)	0.01510 (19)
C3	0.66147 (13)	0.49037 (11)	0.24972 (6)	0.01555 (19)
H3A	0.7032	0.4279	0.2812	0.019*
C4	0.62226 (13)	0.46589 (11)	0.15823 (6)	0.01420 (18)
C5	0.63753 (13)	0.33966 (11)	0.08394 (6)	0.01463 (18)
N3A	0.80196 (12)	0.03401 (11)	0.55694 (6)	0.01923 (18)
N4A	0.90801 (14)	-0.15177 (12)	0.60538 (7)	0.0248 (2)
C6A	0.89063 (14)	-0.00860 (13)	0.62071 (7)	0.0192 (2)
C7A	0.96163 (15)	0.10318 (14)	0.70158 (7)	0.0226 (2)
H7AA	1.0235	0.0786	0.7475	0.027*
C8A	0.93848 (15)	0.24717 (14)	0.71159 (8)	0.0239 (2)
H8AA	0.9838	0.3193	0.7653	0.029*
C9A	0.84776 (15)	0.29051 (13)	0.64303 (8)	0.0224 (2)
C10	0.78076 (15)	0.17873 (13)	0.56658 (7)	0.0212 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10A	0.7192	0.2017	0.5199	0.025*
C11A	0.82578 (18)	0.45015 (14)	0.65337 (10)	0.0324 (3)
H11A	0.7779	0.4614	0.5969	0.049*
H11B	0.9384	0.5245	0.6729	0.049*
H11C	0.7470	0.4665	0.6969	0.049*
N3B	0.26714 (12)	0.00202 (10)	0.01212 (6)	0.01689 (17)
N4B	0.37262 (14)	-0.08155 (12)	0.13095 (7)	0.02199 (19)
C6B	0.30472 (14)	0.02005 (12)	0.10101 (7)	0.01719 (19)
C7B	0.26600 (15)	0.14651 (13)	0.15793 (7)	0.0213 (2)
H7BA	0.2909	0.1642	0.2197	0.026*
C8B	0.19158 (15)	0.24211 (12)	0.12087 (8)	0.0214 (2)
H8BA	0.1650	0.3240	0.1585	0.026*
C9B	0.15376 (14)	0.22026 (12)	0.02713 (8)	0.0197 (2)
C10B	0.19410 (14)	0.09771 (12)	-0.02480 (7)	0.0184 (2)
H10B	0.1712	0.0791	-0.0868	0.022*
C11B	0.07429 (16)	0.32759 (14)	-0.01255 (9)	0.0264 (2)
H11D	0.0564	0.2936	-0.0766	0.040*
H11E	0.1526	0.4299	0.0046	0.040*
H11F	-0.0369	0.3278	0.0090	0.040*
O3W	0.52828 (12)	1.04505 (10)	0.31330 (5)	0.02258 (17)
O2W	0.54335 (13)	0.32242 (10)	0.43022 (6)	0.02698 (19)
O1W	0.84767 (12)	0.15951 (12)	0.25161 (6)	0.0291 (2)
H1N2	0.523 (2)	0.6047 (18)	0.0897 (11)	0.027 (4)*
H3NA	0.968 (2)	-0.176 (2)	0.6462 (12)	0.040 (5)*
H1NB	0.286 (2)	-0.080 (2)	-0.0250 (11)	0.033 (4)*
H2NB	0.393 (2)	-0.162 (2)	0.0913 (12)	0.039 (4)*
H3NB	0.409 (2)	-0.063 (2)	0.1891 (12)	0.038 (4)*
H1NA	0.749 (2)	-0.037 (2)	0.5028 (12)	0.040 (4)*
H2NA	0.853 (2)	-0.220 (2)	0.5538 (12)	0.039 (4)*
H1W1	0.820 (2)	0.200 (2)	0.2082 (13)	0.045 (5)*
H2W1	0.751 (3)	0.123 (2)	0.2703 (14)	0.053 (6)*
H1W2	0.591 (2)	0.414 (2)	0.4263 (12)	0.043 (5)*
H2W2	0.470 (2)	0.330 (2)	0.4684 (13)	0.044 (5)*
H1W3	0.558 (2)	0.9771 (19)	0.3403 (11)	0.034 (4)*
H2W3	0.529 (2)	1.128 (2)	0.3540 (12)	0.043 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0295 (4)	0.0177 (4)	0.0135 (3)	0.0084 (3)	0.0007 (3)	0.0032 (3)
O2	0.0349 (4)	0.0168 (4)	0.0150 (3)	0.0118 (3)	-0.0016 (3)	0.0001 (3)
O3	0.0337 (4)	0.0199 (4)	0.0145 (3)	0.0152 (3)	0.0010 (3)	0.0026 (3)
O4	0.0249 (4)	0.0174 (4)	0.0129 (3)	0.0083 (3)	-0.0006 (3)	0.0022 (3)
N1	0.0240 (4)	0.0158 (4)	0.0130 (4)	0.0078 (3)	0.0007 (3)	0.0013 (3)
N2	0.0224 (4)	0.0151 (4)	0.0120 (4)	0.0080 (3)	0.0004 (3)	0.0014 (3)
C1	0.0186 (5)	0.0164 (4)	0.0130 (4)	0.0051 (4)	0.0010 (3)	0.0015 (3)
C2	0.0181 (4)	0.0143 (4)	0.0124 (4)	0.0047 (4)	0.0010 (3)	0.0020 (3)
C3	0.0188 (5)	0.0148 (4)	0.0135 (4)	0.0055 (4)	0.0011 (3)	0.0034 (3)

C4	0.0157 (4)	0.0129 (4)	0.0138 (4)	0.0046 (3)	0.0010 (3)	0.0022 (3)
C5	0.0167 (4)	0.0140 (4)	0.0128 (4)	0.0039 (3)	0.0020 (3)	0.0027 (3)
N3A	0.0224 (4)	0.0195 (4)	0.0143 (4)	0.0057 (3)	-0.0004 (3)	0.0016 (3)
N4A	0.0293 (5)	0.0217 (5)	0.0213 (5)	0.0068 (4)	-0.0069 (4)	0.0037 (4)
C6A	0.0182 (5)	0.0214 (5)	0.0164 (5)	0.0025 (4)	0.0006 (4)	0.0047 (4)
C7A	0.0210 (5)	0.0264 (5)	0.0158 (5)	0.0009 (4)	-0.0030 (4)	0.0037 (4)
C8A	0.0203 (5)	0.0256 (6)	0.0189 (5)	-0.0002 (4)	-0.0002 (4)	-0.0015 (4)
C9A	0.0206 (5)	0.0207 (5)	0.0228 (5)	0.0042 (4)	0.0021 (4)	0.0002 (4)
C10	0.0223 (5)	0.0212 (5)	0.0199 (5)	0.0074 (4)	0.0008 (4)	0.0033 (4)
C11A	0.0317 (6)	0.0207 (6)	0.0391 (7)	0.0074 (5)	-0.0022 (5)	-0.0039 (5)
N3B	0.0194 (4)	0.0146 (4)	0.0160 (4)	0.0062 (3)	0.0015 (3)	0.0005 (3)
N4B	0.0294 (5)	0.0216 (5)	0.0152 (4)	0.0108 (4)	-0.0015 (4)	0.0013 (3)
C6B	0.0168 (4)	0.0158 (5)	0.0168 (5)	0.0028 (4)	0.0016 (3)	0.0012 (4)
C7B	0.0238 (5)	0.0187 (5)	0.0184 (5)	0.0050 (4)	0.0034 (4)	-0.0009 (4)
C8B	0.0209 (5)	0.0152 (5)	0.0260 (5)	0.0047 (4)	0.0065 (4)	-0.0009 (4)
C9B	0.0168 (5)	0.0154 (5)	0.0272 (5)	0.0046 (4)	0.0049 (4)	0.0049 (4)
C10B	0.0184 (5)	0.0174 (5)	0.0194 (5)	0.0048 (4)	0.0021 (4)	0.0048 (4)
C11B	0.0260 (6)	0.0207 (5)	0.0370 (6)	0.0100 (4)	0.0063 (5)	0.0112 (5)
O3W	0.0336 (5)	0.0189 (4)	0.0159 (4)	0.0100 (3)	-0.0003 (3)	0.0032 (3)
O2W	0.0402 (5)	0.0185 (4)	0.0252 (4)	0.0108 (4)	0.0132 (4)	0.0052 (3)
O1W	0.0251 (4)	0.0407 (5)	0.0259 (4)	0.0095 (4)	-0.0003 (3)	0.0182 (4)

Geometric parameters (Å, °)

O1—C1	1.2637 (12)	C11A—H11A	0.9600
O2—C1	1.2640 (13)	C11A—H11B	0.9600
O3—C5	1.2637 (12)	C11A—H11C	0.9600
O4—C5	1.2511 (12)	N3B—C6B	1.3468 (13)
N1—N2	1.3467 (12)	N3B—C10B	1.3618 (13)
N1—C2	1.3483 (13)	N3B—H1NB	0.897 (17)
N2—C4	1.3572 (12)	N4B—C6B	1.3329 (14)
N2—H1N2	0.929 (16)	N4B—H2NB	0.910 (18)
C1—C2	1.4907 (14)	N4B—H3NB	0.890 (18)
C2—C3	1.4038 (14)	C6B—C7B	1.4193 (14)
C3—C4	1.3798 (13)	C7B—C8B	1.3683 (16)
С3—НЗА	0.9300	С7В—Н7ВА	0.9300
C4—C5	1.4884 (13)	C8B—C9B	1.4153 (16)
N3A—C6A	1.3468 (14)	C8B—H8BA	0.9300
N3A—C10	1.3656 (14)	C9B—C10B	1.3638 (15)
N3A—H1NA	0.943 (18)	C9B—C11B	1.5027 (15)
N4A—C6A	1.3356 (15)	C10B—H10B	0.9300
N4A—H3NA	0.863 (18)	C11B—H11D	0.9600
N4A—H2NA	0.909 (18)	C11B—H11E	0.9600
C6A—C7A	1.4171 (15)	C11B—H11F	0.9600
C7A—C8A	1.3643 (17)	O3W—H1W3	0.889 (18)
С7А—Н7АА	0.9300	O3W—H2W3	0.879 (19)
C8A—C9A	1.4155 (17)	O2W—H1W2	0.85 (2)
C8A—H8AA	0.9300	O2W—H2W2	0.86 (2)
C9A—C10	1.3656 (15)	O1W—H1W1	0.87 (2)

C9A—C11A	1.5026 (17)	O1W—H2W1	0.85 (2)
C10—H10A	0.9300		
N2—N1—C2	104.08 (8)	N3A—C10—H10A	119.2
N1—N2—C4	112.83 (8)	C9A—C10—H10A	119.2
N1—N2—H1N2	117.6 (9)	C9A—C11A—H11A	109.5
C4—N2—H1N2	129.5 (9)	C9A—C11A—H11B	109.5
O1—C1—O2	123.84 (9)	H11A—C11A—H11B	109.5
O1—C1—C2	117.16 (9)	C9A—C11A—H11C	109.5
O2—C1—C2	119.00 (9)	H11A—C11A—H11C	109.5
N1—C2—C3	111.76 (9)	H11B—C11A—H11C	109.5
N1—C2—C1	121.73 (9)	C6B—N3B—C10B	123.39 (9)
C3—C2—C1	126.47 (9)	C6B—N3B—H1NB	118.8 (11)
C4—C3—C2	104.59 (9)	C10B—N3B—H1NB	117.7 (11)
С4—С3—НЗА	127.7	C6B—N4B—H2NB	119.7 (11)
С2—С3—Н3А	127.7	C6B—N4B—H3NB	118.8 (11)
N2—C4—C3	106.73 (9)	H2NB—N4B—H3NB	121.1 (16)
N2-C4-C5	122.30 (9)	N4B—C6B—N3B	119.07 (10)
$C_{3} - C_{4} - C_{5}$	130.96 (9)	N4B— $C6B$ — $C7B$	123 59 (10)
04-05-03	125 34 (9)	N3B— $C6B$ — $C7B$	117 33 (10)
04 - 05 - 04	118 90 (9)	C8B - C7B - C6B	119 29 (10)
03 - 05 - 04	115.76 (9)	C8B—C7B—H7BA	120.4
C6A = N3A = C10	123.07 (10)	C6B—C7B—H7BA	120.4
C6A = N3A = H1NA	120.5(11)	C7B— $C8B$ — $C9B$	122.07 (10)
C10—N3A—H1NA	116 5 (11)	C7B - C8B - H8BA	119.0
C6A—N4A—H3NA	118.1 (12)	C9B - C8B - H8BA	119.0
C6A = N4A = H2NA	119.0 (11)	C10B-C9B-C8B	116.49 (10)
H3NA—N4A—H2NA	122.8 (16)	C10B - C9B - C11B	122.09(10)
N4A—C6A—N3A	119 34 (10)	C8B - C9B - C11B	122.09(10) 121.41(10)
N4A—C6A—C7A	123 26 (10)	N3B-C10B-C9B	121.11(10) 121.42(10)
N3A - C6A - C7A	117 41 (10)	N3B-C10B-H10B	1193
C8A - C7A - C6A	119 48 (10)	C9B-C10B-H10B	119.3
C8A - C7A - H7AA	120.3	C9B— $C11B$ — $H11D$	109.5
C6A - C7A - H7AA	120.3	C9B—C11B—H11E	109.5
C7A - C8A - C9A	122 21 (10)	H11D—C11B—H11E	109.5
C7A - C8A - H8AA	118.9	C9B-C11B-H11F	109.5
C9A - C8A - H8AA	118.9	H11D—C11B—H11F	109.5
C10-C9A-C8A	116.20 (10)	H11F—C11B—H11F	109.5
C10-C9A-C11A	121 63 (11)	H1W3 = 03W = H2W3	109.1 (15)
C8A - C9A - C11A	122.03(11) 122.17(11)	H1W2 = O2W = H2W2	105.7(17)
N3A_C10_C9A	122.17 (11)	$H1W1 \longrightarrow 01W \longrightarrow H2W1$	105.7(18)
	0.55 (11)		170 (0 (11)
C_2 —N1—N2—C4	-0.55(11)	N4A - C6A - C7A - C8A	0.10(10)
N2 - N1 - C2 - C1	0.10(11)	NSA - COA - CVA - CVA	-0.19(16)
$N_2 - N_1 - C_2 - C_1$	177.98 (9)	COA - C/A - COA - CYA	-1.06 (17)
UI - UI - U2 - NI	1/2.05 (10)	C/A = C8A = C9A = C10	1.43 (17)
$U_2 - U_1 - U_2 - N_1$	-8.81 (15)	C/A = C8A = C9A = C11A	-1/8.63(11)
01 - C1 - C2 - C3	-10.46 (16)	C6A - N3A - C10 - C9A	-0.66 (17)
02-C1-C2-C3	168.68 (10)	C8A—C9A—C10—N3A	-0.58 (16)
N1—C2—C3—C4	0.25 (12)	C11A—C9A—C10—N3A	1/9.48 (11)

C1—C2—C3—C4	-177.44 (10)	C10B—N3B—C6B—N4B	178.55 (10)
N1—N2—C4—C3	0.72 (12)	C10B—N3B—C6B—C7B	-0.34 (15)
N1—N2—C4—C5	-178.32 (9)	N4B—C6B—C7B—C8B	-178.10 (11)
C2-C3-C4-N2	-0.56 (11)	N3B—C6B—C7B—C8B	0.74 (15)
C2—C3—C4—C5	178.37 (10)	C6B-C7B-C8B-C9B	-0.84 (17)
N2-C4-C5-O4	-4.89 (15)	C7B-C8B-C9B-C10B	0.50 (16)
C3—C4—C5—O4	176.33 (10)	C7B—C8B—C9B—C11B	-179.15 (10)
N2—C4—C5—O3	174.18 (9)	C6B—N3B—C10B—C9B	0.02 (16)
C3—C4—C5—O3	-4.60 (16)	C8B-C9B-C10B-N3B	-0.08 (15)
C10—N3A—C6A—N4A	-178.84 (10)	C11B—C9B—C10B—N3B	179.57 (10)
C10—N3A—C6A—C7A	1.05 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N2—H1N2····O4 ⁱ	0.931 (16)	1.871 (16)	2.7912 (12)	169.7 (15)	
N4A—H3NA…O1W ⁱⁱ	0.861 (18)	2.024 (17)	2.8520 (14)	161.2 (17)	
N3B—H1NB····O3 ⁱⁱⁱ	0.900 (17)	1.755 (17)	2.6483 (12)	171.4 (16)	
N4B—H2NB····O4 ⁱⁱⁱ	0.914 (18)	2.022 (18)	2.9323 (13)	173.8 (16)	
N4B—H3NB···O3W ^{iv}	0.889 (18)	2.007 (18)	2.8641 (13)	161.6 (17)	
N3A—H1NA···O2 ^{iv}	0.942 (18)	1.732 (18)	2.6686 (12)	172.8 (17)	
N4A—H2NA…O1 ^{iv}	0.907 (18)	2.106 (18)	3.0021 (13)	169.4 (15)	
O1W—H1W1…O3	0.871 (19)	1.902 (19)	2.7517 (12)	164.8 (17)	
O1W—H2W1···O3W ^{iv}	0.85 (2)	1.94 (2)	2.7878 (14)	178 (2)	
O2W—H1W2…O1	0.850 (18)	2.003 (18)	2.8427 (12)	169.8 (17)	
$O2W$ — $H2W2$ ··· $O1^v$	0.858 (18)	1.987 (18)	2.8434 (13)	176.1 (15)	
O3W—H1W3…O2	0.888 (17)	1.844 (17)	2.7299 (12)	174.8 (15)	
O3W—H2W3···O2W ^{vi}	0.881 (18)	1.900 (18)	2.7758 (13)	172.1 (17)	
C10—H10A…O2W	0.93	2.50	3.3986 (15)	164	
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (ii) - <i>x</i> +2, - <i>y</i> , - <i>z</i> +1; (iii) - <i>x</i> +1, - <i>y</i> , - <i>z</i> ; (iv) <i>x</i> , <i>y</i> -1, <i>z</i> ; (v) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (vi) <i>x</i> , <i>y</i> +1, <i>z</i> .					

Fig. 2